HySpirit - A Probabilistic Inference Engine for Hypermedia Retrieval in Large Databases

نویسندگان

  • Norbert Fuhr
  • Thomas Roelleke
چکیده

HySpirit is a retrieval engine for hypermedia retrieval integrating concepts from information retrieval (IR) and deductive databases. The logical view on IR models retrieval as uncertain inference, for which we use probabilistic reasoning. Since the expressiveness of classical IR models is not suucient for hypermedia retrieval, HySpirit is based on a probabilistic version of Datalog. In hypermedia retrieval, diierent nodes may contain contradictory information; thus, we introduce probabilistic four-valued Datalog. In order to support fact queries as well as content-based retrieval, HySpirit is based on an open world assumption, but allows for predicate-speciic closed world assumptions. For performing eecient retrieval on large databases, our system provides access to external data. We demonstrate the application of HySpirit by giving examples for retrieval on images, structured documents and large databases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retrieving Complex Objects with HySpirit

Traditional Information Retrieval (IR) considers documents as atomic units. In this paper, we show the retrieval of the components of the documents which satisfy best the information need. This finer granularity eases the browsing of the retrieval result. The approach supports multimedia and networked IR since multimedia documents are composed of other objects and networks combine several colle...

متن کامل

Information Retrieval Methods for Multimedia Objects

We describe five major concepts that are essential for multimedia retrieval: uncertain inference addresses vagueness of queries and imprecision of content representations. Predicate logic allows for dealing with spatial and temporal relationships. The document structure has to be considered in order to retrieve the most relevant part of a document in response to a query. Whereas fact retrieval ...

متن کامل

HySpirit — a Flexible System for Investigating Probabilistic Reasoning in Multimedia Information Retrieval

Describing the information retrieval task as computing the probability P (d! q) that a document d implies a query q has become a key issue of theoretical information retrieval research work. We introduce HySpirit as a flexible system for describing the retrieval process as probabilistic implication and for representing the diverse knowledge dimensions of multimedia documents. HySpirit supports ...

متن کامل

Information Retrieval with Probabilistic Datalog

The probabilistic logical approach in Information Retrieval (IR) aims at describing the retrieval process as the computation of the probability P (d! q) that a document d implies a query q. Probabilistic Datalog (DatalogP ) is a logic that enables uncertain inference. We use DatalogP as a platform for investigating the probabilistic logical approach in IR. The expressiveness of DatalogP allows ...

متن کامل

Probabilistic Logical Information Retrieval for Content, Hypertext, and Database Querying

Classical retrieval models support content-oriented searching for documents using a set of words as data model. However, in hypertext and database applications we want to consider the link structure and attribute values of documents in addition to the pure content. In this paper, we present a framework based on probabilistic logical retrieval for describing the retrieval function for a query wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998